1,705 research outputs found

    Dynamic architectural interplay between leucocytes and mammary epithelial cells.

    Get PDF
    The adult mammary gland undergoes dynamic changes during puberty and the postnatal developmental cycle. The mammary epithelium is composed of a bilayer of outer basal, or myoepithelial, cells and inner luminal cells, the latter lineage giving rise to the milk-producing alveolar cells during pregnancy. These luminal alveolar cells undergo Stat3-mediated programmed cell death following the cessation of lactation. It is established that immune cells in the microenvironment of the gland have a role to play both in the ductal outgrowth during puberty and in the removal of dead cells and remodelling of the stroma during the process of postlactational regression. However, most studies have focussed on the role of the stromal immune cell compartment or have quantified immune cell populations in tissue extracts. Our recent development of protocols for deep imaging of the mammary gland in three dimensions (3D) has enabled the architectural relationship between immune cells and the epithelium to be examined in detail, and we have discovered a surprisingly dynamic relationship between the basal epithelium and leucocytes. Furthermore, we have observed morphological changes in the myoepithelial cells, as involution progresses, which were not revealed by previous work in 2D tissue sections and whole tissue. This dynamic architecture suggests a role for myoepithelial cells in the orderly progression of involution. We conclude that deep imaging of mammary gland and other tissues is essential for analysing complex interactions between cellular compartments

    Dietary restriction of tyrosine and phenylalanine lowers tyrosinaemia associated with nitisinone therapy of alkaptonuria.

    Get PDF
    BACKGROUND: Alkaptonuria (AKU) is caused by homogentisate 1,2-dioxygenase deficiency that leads to homogentisic acid (HGA) accumulation, ochronosis and severe osteoarthropathy. Recently, nitisinone treatment, which blocks HGA formation, has been effective in AKU patients. However, a consequence of nitisinone is elevated tyrosine that can cause keratopathy. The effect of tyrosine and phenylalanine dietary restriction was investigated in nitisinone-treated AKU mice, and in an observational study of dietary intervention in AKU patients. METHODS: Nitisinone-treated AKU mice were fed tyrosine/phenylalanine-free and phenylalanine-free diets with phenylalanine supplementation in drinking water. Tyrosine metabolites were measured pre-nitisinone, post-nitisinone, and after dietary restriction. Subsequently an observational study was undertaken in 10 patients attending the National Alkaptonuria Centre (NAC), with tyrosine >700ÎŒmol/L who had been advised to restrict dietary protein intake and where necessary, to use tyrosine/phenylalanine-free amino acid supplements. RESULTS: Elevated tyrosine (813ÎŒmol/L) was significantly reduced in nitisinone-treated AKU mice fed a tyrosine/phenylalanine-free diet in a dose responsive manner. At 3 days of restriction, tyrosine was 389.3ÎŒmol/L, 274.8ÎŒmol/L and 144.3ÎŒmol/L with decreasing phenylalanine doses. In contrast, tyrosine was not effectively reduced in mice by a phenylalanine-free diet; at 3 days tyrosine was 757.3ÎŒmol/L, 530.2ÎŒmol/L and 656.2ÎŒmol/L, with no dose response to phenylalanine supplementation. In NAC patients, tyrosine was significantly reduced (p=0.002) when restricting dietary protein alone, and when combined with tyrosine/phenylalanine-free amino acid supplementation; 4 out of 10 patients achieved tyrosine <700ÎŒmol/L. CONCLUSION: Tyrosine/phenylalanine dietary restriction significantly reduced nitisinone-induced tyrosinaemia in mice, with phenylalanine restriction alone proving ineffective. Similarly, protein restriction significantly reduced circulating tyrosine in AKU patients

    Familial cardiomyopathy caused by a novel heterozygous mutation in the gene LMNA (c.1434dupG): a cardiac MRI-augmented segregation study

    Get PDF
    In a five-generation family carrying a novel frameshift LMNA variant (c.1434dupG, p.Leu479AlafsX72), imaging-augmented segregation analysis supports its association with lamin heart disease. Affected members exhibit conduction abnormalities, supraventricular and ventricular arrythmias, dilated cardiomyopathy with non-infarct pattern midwall septal fibrosis, heart failure and thromboembolic complications

    Myocardial Perfusion Defects in Hypertrophic Cardiomyopathy Mutation Carriers

    Get PDF
    Background Impaired myocardial blood flow (MBF) in the absence of epicardial coronary disease is a feature of hypertrophic cardiomyopathy (HCM). Although most evident in hypertrophied or scarred segments, reduced MBF can occur in apparently normal segments. We hypothesized that impaired MBF and myocardial perfusion reserve, quantified using perfusion mapping cardiac magnetic resonance, might occur in the absence of overt left ventricular hypertrophy (LVH) and late gadolinium enhancement, in mutation carriers without LVH criteria for HCM (genotype-positive, left ventricular hypertrophy-negative). Methods and Results A single center, case-control study investigated MBF and myocardial perfusion reserve (the ratio of MBF at stress:rest), along with other pre-phenotypic features of HCM. Individuals with genotype-positive, left ventricular hypertrophy-negative (n=50) with likely pathogenic/pathogenic variants and no evidence of LVH, and matched controls (n=28) underwent cardiac magnetic resonance. Cardiac magnetic resonance identified LVH-fulfilling criteria for HCM in 5 patients who were excluded. Individuals with genotype-positive, left ventricular hypertrophy-negative had longer indexed anterior mitral valve leaflet length (12.52±2.1 versus 11.55±1.6 mm/m2, P=0.03), lower left ventricular end-systolic volume (21.0±6.9 versus 26.7±6.2 mm/m2, P≀0.005) and higher left ventricular ejection fraction (71.9±5.5 versus 65.8±4.4%, P≀0.005). Maximum wall thickness was not significantly different (9.03±1.95 versus 8.37±1.2 mm, P=0.075), and no subject had significant late gadolinium enhancement (minor right ventricle‒insertion point late gadolinium enhancement only). Perfusion mapping demonstrated visual perfusion defects in 9 (20%) carriers versus 0 controls (P=0.011). These were almost all septal or near right ventricle insertion points. Globally, myocardial perfusion reserve was lower in carriers (2.77±0.83 versus 3.24±0.63, P=0.009), with a subendocardial:subepicardial myocardial perfusion reserve gradient (2.55±0.75 versus 3.2±0.65, P=<0.005; 3.01±0.96 versus 3.47±0.75, P=0.026) but equivalent MBF (2.75±0.82 versus 2.65±0.69 mL/g per min, P=0.826). Conclusions Regional and global impaired myocardial perfusion can occur in HCM mutation carriers, in the absence of significant hypertrophy or scarring

    Assessing the effect of nitisinone induced hypertyrosinaemia on monoamine neurotransmitters in brain tissue from a murine model of alkaptonuria using mass spectrometry imaging.

    Get PDF
    OBJECTIVE:Nitisinone induced hypertyrosinaemia is a concern in patients with Alkaptonuria (AKU). It has been suggested that this may alter neurotransmitter metabolism, specifically dopamine and serotonin. Herein mass spectrometry imaging (MSI) is used for the direct measurement of 2,4-diphenyl-pyranylium tetrafluoroborate (DPP-TFB) derivatives of monoamine neurotransmitters in brain tissue from a murine model of AKU following treatment with nitisinone. METHODS:Metabolite changes were assessed using MSI on DPP-TFB derivatised fresh frozen tissue sections directing analysis towards primary amine neurotransmitters. Matched tail bleed plasma samples were analysed using LC-MS/MS. Eighteen BALB/c mice were included in this study: HGD-/- (n = 6, treated with nitisinone-4 mg/L, in drinking water); HGD-/- (n = 6, no treatment) and HGD+/- (n = 6, no treatment). RESULTS:Ion intensity and distribution of DPP-TFB derivatives in brain tissue for dopamine, 3-methoxytyramine, noradrenaline, tryptophan, serotonin, and glutamate were not significantly different following treatment with nitisinone in HGD -/- mice, and no significant differences were observed between HGD-/- and HGD+/- mice that received no treatment. Tyrosine (10-fold in both comparisons, p = 0.003; [BALB/c HGD-/- (n = 6) and BALB/c HGD+/- (n = 6) (no treatment) vs. BALB/c HGD-/- (n = 6, treated)] and tyramine (25-fold, p = 0.02; 32-fold, p = 0.02) increased significantly following treatment with nitisinone. Plasma tyrosine and homogentisic acid increased (ninefold, p = < 0.0001) and decreased (ninefold, p = 0.004), respectively in HGD-/- mice treated with nitisinone. CONCLUSIONS:Monoamine neurotransmitters in brain tissue from a murine model of AKU did not change following treatment with nitisinone. These findings have significant implications for patients with AKU as they suggest monoamine neurotransmitters are not altered following treatment with nitisinone

    3D deep convolutional neural network-based ventilated lung segmentation using multi-nuclear hyperpolarized gas MRI

    Get PDF
    Hyperpolarized gas MRI enables visualization of regional lung ventilation with high spatial resolution. Segmentation of the ventilated lung is required to calculate clinically relevant biomarkers. Recent research in deep learning (DL) has shown promising results for numerous segmentation problems. In this work, we evaluate a 3D V-Net to segment ventilated lung regions on hyperpolarized gas MRI scans. The dataset consists of 743 helium-3 (3He) or xenon-129 (129Xe) volumetric scans and corresponding expert segmentations from 326 healthy subjects and patients with a wide range of pathologies. We evaluated segmentation performance for several DL experimental methods via overlap, distance and error metrics and compared them to conventional segmentation methods, namely, spatial fuzzy c-means (SFCM) and K-means clustering. We observed that training on combined 3He and 129Xe MRI scans outperformed other DL methods, achieving a mean ± SD Dice of 0.958 ± 0.022, average boundary Hausdorff distance of 2.22 ± 2.16 mm, Hausdorff 95th percentile of 8.53 ± 12.98 mm and relative error of 0.087 ± 0.049. Moreover, no difference in performance was observed between 129Xe and 3He scans in the testing set. Combined training on 129Xe and 3He yielded statistically significant improvements over the conventional methods (p < 0.0001). The DL approach evaluated provides accurate, robust and rapid segmentations of ventilated lung regions and successfully excludes non-lung regions such as the airways and noise artifacts and is expected to eliminate the need for, or significantly reduce, subsequent time-consuming manual editing

    Genetic testing for exercise prescription and injury prevention: AIS-Athlome consortium-FIMS joint statement

    Get PDF
    Abstract Background There has been considerable growth in basic knowledge and understanding of how genes are influencing response to exercise training and predisposition to injuries and chronic diseases. On the basis of this knowledge, clinical genetic tests may in the future allow the personalisation and optimisation of physical activity, thus providing an avenue for increased efficiency of exercise prescription for health and disease. Results This review provides an overview of the current status of genetic testing for the purposes of exercise prescription and injury prevention. As such there are a variety of potential uses for genetic testing, including identification of risks associated with participation in sport and understanding individual response to particular types of exercise. However, there are many challenges remaining before genetic testing has evidence-based practical applications; including adoption of international standards for genomics research, as well as resistance against the agendas driven by direct-to-consumer genetic testing companies. Here we propose a way forward to develop an evidence-based approach to support genetic testing for exercise prescription and injury prevention. Conclusion Based on current knowledge, there is no current clinical application for genetic testing in the area of exercise prescription and injury prevention, however the necessary steps are outlined for the development of evidence-based clinical applications involving genetic testing

    Assessment of the Effect of Once Daily Nitisinone Therapy on 24-h Urinary Metadrenalines and 5-Hydroxyindole Acetic Acid Excretion in Patients with Alkaptonuria After 4 Weeks of Treatment.

    Get PDF
    BackgroundOne of the major metabolic consequences of using nitisinone to treat patients with alkaptonuria is that circulating tyrosine concentrations increase. As tyrosine is required for the biosynthesis of catecholamine neurotransmitters, it is possible that their metabolism is altered as a consequence. Herein we report the 24-h urinary excretion of normetadrenaline (NMA), metadrenaline (MA), 3-methoxytyramine (3-MT) (catecholamine metabolites) and 5-hydroxyindole acetic acid (5-HIAA, metabolite of serotonin) in a cohort of AKU patients before and after a 4-week treatment trial with nitisinone.Materials and methods24 h urinary excretions of NMA, MA, 3-MT and 5-HIAA were determined by liquid chromatography tandem mass spectrometry. Interassay coefficient of variation was ResultsUrine samples were assayed at baseline (pre-nitisinone, n = 36) and 4 weeks later; 7 received no nitisinone (4 male, mean age (±SD) 46.3 (16.4) years), and 29 received a daily dose of nitisinone [1 mg (n = 7, 6 male, mean age 45.9 (10.9) years), 2 mg (n = 8, 5 male, mean age 43.9 (13.7) years), 4 mg (n = 8, 5 male, mean age 47.3 (10.7) years) and 8 mg (n = 6, 4 male, mean age 53.8 (8.3) years)]. 3-MT concentrations increase significantly (p ConclusionsThis study shows that catecholamine and serotonin metabolism is altered by treatment with nitisinone

    A Semi-Lagrangian scheme for a modified version of the Hughes model for pedestrian flow

    Get PDF
    In this paper we present a Semi-Lagrangian scheme for a regularized version of the Hughes model for pedestrian flow. Hughes originally proposed a coupled nonlinear PDE system describing the evolution of a large pedestrian group trying to exit a domain as fast as possible. The original model corresponds to a system of a conservation law for the pedestrian density and an Eikonal equation to determine the weighted distance to the exit. We consider this model in presence of small diffusion and discuss the numerical analysis of the proposed Semi-Lagrangian scheme. Furthermore we illustrate the effect of small diffusion on the exit time with various numerical experiments
    • 

    corecore